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The aim of this study was to explore the association between taste and metabolite profiles of

Japanese refined sake. Nontarget metabolome analysis was conducted using capillary electro-

phoresis mass spectrometry. Zatsumi, an unpleasant not clear flavor, and sweetness, bitterness,

and sourness were graded by four experienced panelists. Regression models based on support

vector regression (SVR) were used to estimate the relationships among sensory evaluation scores

and quantified metabolites and visualized as a nonlinear relationship between sensory scores

and metabolite components. The SVR model was highly accurate and versatile: the correlation

coefficients for whole training data, cross-validation, and separated validation data were 0.86, 0.73,

and 0.73, respectively, for zatsumi. Other sensory scores were also analyzed and modeled by SVR.

The methodology demonstrated here carries great potential for predicting the relevant parameters

and quantitative relationships between charged metabolites and sensory evaluation in Japanese

refined sake.
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INTRODUCTION

Elucidation of the relationship between the quality characteri-
stics of foodstuffs and beverage products and their constitutive
components is important for various research fields including
food engineering, biochemistry, and medical sciences and may
contribute to the improvement or investigation of food taste/
flavor and to the study of the functional characteristics of foods.
Although the food/beverage industry already carries out human
assessment of taste/flavor, to fully understand these relationships,
objective, reproducible, sensitive, and efficient tools are needed
that mimic human sensory perceptions. To obtain sensitive, fair,
and reproducible assessment criteria, the development of artificial
tongues (1-3) and noses (4) is important for scoring taste and
smell and for eliminating the bias of human evaluators.

Key componentswith sensory relevance have been investigated
in amino acids (5, 6), sugars, organic and inorganic acids (7, 8),
peptides (9), and larger nonvolatile metabolites (10) present in
several beverages. Although attempts have been made to corre-
late one or more beverage components with sensory data
obtained from human tasters, contradictory findings have been
reported, and the analysis of multiple substances is both essential
and intricate. To predict sensory evaluation scores or to classify
the characteristics of a food or beverage by its constituents,

pattern recognition methods have been applied routinely. Sup-
port vector machines (SVM) (11, 12) have been used widely to
classify the regional origin of wines using UV-visible spectro-
photometry data (13). Artificial neural networks (ANN) and self-
organizing maps (SOM) helped to predict the growth region of
red wines on the basis of their constitutive metals (14); they were
also used for the characteristic metabolome profiling of toma-
toes (15). The ANN has been employed as an artificial nose in
classifying the smell of wines (4) and teas (5). These studies
concluded that pattern recognition yielded higher predictive
performance than conventional statistical analyses such as prin-
cipal component analysis (PCA) and partial least-squares dis-
criminant analysis (PLS-DA) (16, 17). The ability of these
methods to solve nonlinear problems was confirmed; ANN can
approximate any function with a single hidden layer (18), and
SVM can separate given, nonlinearly distributed sample data by
using hyperspace with a kernel (19). Currently such intelligent
techniques, rather than linear methods, are used to obtain
accurate discriminations and classifications.

Electric tongues and noses have been developed to estimate the
taste or fragrance of water, green tea, coffee, orange juice, and
miso soup (1,20-22). They usually predict the sensory evaluation
scores assigned quantitatively by human tasters. Both linear
predictive models such as multiple variable linear regression
(MLR) and PLS (22) and nonlinear models, for example,
ANN, have been used routinely to solve regression problems.
Although the linear models facilitate simple interpretation, their
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regression ability is limited.On the other hand, although it ismore
difficult to interpret nonlinear models, they can potentially
identify nonlinear relations. Once amathematicalmodel has been
constructed for the prediction of sensory evaluation based on the
constituents of a food or beverage, the contribution of constitu-
tive variables to the sensory evaluation can be analyzed and the
constituent profiles can be optimized by simulation to maximize
or minimize sensory evaluations. Even with black box-type
models such analyses can be conducted by systematically altering
the variables and observing the models’ response (23). Therefore,
in the selection of applicable predictive models, their high
predictive ability rather than their interpretability should be the
primary focus.

Sake, a Japanese rice wine brewed with Saccharomyces cere-
visiae yeast, is a traditional, favorite alcoholic beverage of
Japanese consumers. It has played a central role in Japanese
culture for at least 1700 years. Epidemiological studies indicated
that moderate alcohol consumption may be beneficial; it reduces
the risk for coronary heart disease and exerts antiaging effects on
the skin (24-28). Sake is the product of a unique brewing process
that starts by polishing rice kernels to remove their surface and
separating the polished rice into two groups. One group is
steamed,Aspergillus oryzae spores are added, and this is followed
by a 2-day incubation to generate koji rice (malted rice). Then
shubo, a yeastmash, is preparedby addingS. cerevisiae andwater,
and after 2 weeks, more water and the second group of preserved
polished rice are added. After 1 month, shubo yields moromi
(the final mash). Then the clear liquid is extracted by filtering;
after pasteurization to inactivate microorganisms, the product is
bottled as sake (29-31). In this process, koji produces enzymes
that convert starch to sugar, proteolytic enzymes that break down
proteins, and >50 other enzymes that are responsible for the
flavor and taste of sake (29). Although there are several varia-
tions, sake is roughly categorized into two types depending on the
filtration methods used in the final step: cloudy sake (Nigorisake
or Doburoku) contains white particles due to the incomplete
elimination of mash by rough filtration, and refined sake
(Seisyu) is a clear and clean liquid.

To characterize perceivable attributes in Japanese refined
sake, including sweetness, sourness, saltiness, bitterness, umami,
and especially clearness or its inverse texture, zatsumi, is
important (32-34). The taste parameter zatsumi, the inverse of
a sense of clarity, is not limited to the physical turbidity of a
liquid (35); it also indicates unsmoothed and unpleasant attri-
butes, that is, negative sensory characteristics that produce a
detracting flavor in clear beverages. This orosensory pheno-
menon is thought to be caused by low concentrations of bitter-
tasting compounds (33). During the sake brewing process, white
rice grains with a high protein content tend to produce low-
quality sake because of the resultant zatsumi flavor. Although it
has been thought that certain rice protein digestion products
contribute to this unpleasant taste, the responsible compound has
not yet been identified. Attempts have been made to correlate
analyticaldatawithdistinctcomponents insake(30,32,33,36,37).
Sake mainly contains alcoholic and esteric compounds that
characterize its aroma, glucose, and especially amino and organic
acids that determine its taste (32). Although individual amino
acids are known for their contribution to enhancing a pleasant
taste (38), an excess of total amino acids is expected to introduce
unpleasant zatsumi (30, 33, 39). Thus, the relationship between
amino acids and sensory scores is expected to be complex. In
addition to amino acids, organic acids, especially lactate, which in
some instances is added to shubo at the same time as yeast to
prevent the growth of nonuseful microorganisms, are also major
components that may affect the taste of sake (29,40). Moreover,

peptides contribute importantly to the perceivable flavor of
sake (33, 41). Therefore, to identify the compounds other than
amino acids that contribute to sensory evaluations, compre-
hensive omics analyses are necessary.

The aim of the present study was to elucidate the relationship
between the metabolite profiles and the sensory evaluation
of zatsumi in refined Japanese sake. We conducted nontarget
metabolome analysis using capillary electrophoresis-time-
of-flight mass spectrometry (CE-TOFMS) for the simultaneous
quantification of charged and soluble metabolites such as amino
acids, organic acids, and sugar phosphates (42,43) andperformed
sensory evaluations of zatsumi and related organoleptical criteria
by four professional panelists. Besides clustering and correlation
analyses that incorporate the obtained metabolic profiles and
other available properties, we developed predictive models based
on vector regression (SVR), an extended version of SVM (13,19),
for estimating the assigned sensory scores. Although the metho-
dology presented here is limited to mine the links among
observable data and a sensory evaluation parameter, ours is a
new example of an integrated study; it combines simultaneous
metabolite measurements and a mathematical predictive techni-
que to predict the quality of alcoholic beverages from their
contents.

MATERIALS AND METHODS

Sample Preparation. We used 49 commercially available types of
refined sake from Yamagata Prefecture in the Tohoku region of Japan;
they included junmai, special junmai, and junmai ginjo, made without
the artificial addition of alcohol. Junmai and special junmai are made
from a combination of highly refined polished rice grains (polished down
to 70% (junmai) or 60% (special junmai) of their original size), koji
(malted rice (29)), and fresh spring water. Junmai ginjo is brewed for a
relatively longer period at lower temperatures using highly polished rice
(at least 60%) (44, 45).

We took 100 μL from each sake sample and added 1000 μL of Milli-Q
water (Millipore, Bedford, MA) containing internal standards with
concentrations of up to 200 μM. Methionine sulfone and 3-amino-
pyrrodine were the positively charged (cationic) and 2-(N-morpho-
lino)ethanesulfonic acid (MES) and Trimesate the negatively charged
(anionic) internal standards. The samples were centrifuged at 12000 rpm
for 15min and poured through a 5 kDa cutoffmembrane filter (Millipore)
to remove suspended solids, and the filtrate was immediately measured by
CE-MS.

Instrumentation. The instrumentation and measurement conditions
of CE-TOFMS are described elsewhere (46, 47). All CE-ESI-MS experi-
ments were performed using an Agilent CE capillary electrophoresis
system, an Agilent G6220A LC/MSD TOF system, an Agilent1100 series
isocratic HPLC pump, a G1603A Agilent CE-MS adapter kit, and
a G1607A Agilent CE-ESI-MS sprayer kit (Agilent Technologies,
Waldbronn, Germany). The CE-MS adapter kit includes a capillary
cassette that facilitates thermostating of the capillary. The CE-ESIMS
sprayer kit simplifies coupling the CE system with the MS systems; it was
equipped with an electrospray source. For system control and data
acquisition, we used G2201AA Agilent ChemStation software for CE
and Agilent MassHunter software for TOF-MS.With regard to the anion
model, the original Agilent SST316Ti stainless steel ESI needle was
replaced with passivated SST316Ti stainless steel (with 1% formic acid
and 20% isopropanol aqueous solution at 80 �C for 30min) and platinum.

CE-TOFMS Conditions for Cationic Metabolite Analysis.
The CE-TOFMS conditions for cationic metabolite analysis were as
described elsewhere (46). Sample separation was in fused-silica capillaries
(50 μm i.d. � 100 cm total length) filled with 1 mol/L formic acid as the
reference electrolyte. Sample solutionswere injected at 50mbar for 3 s, and
a voltage of 30 kVwas applied. The capillary temperature was maintained
at 20 �C, and the temperature of the sample tray was kept below 5 �C. The
sheath liquid, composed of methanol/water (50% v/v) and 0.1 μmol/L
hexakis(2,2-difluoroethoxy)phosphazene (Hexakis), was delivered at
10 μL/min. ESI-TOF-MS was conducted in the positive ion mode.



376 J. Agric. Food Chem., Vol. 58, No. 1, 2010 Sugimoto et al.

The capillary voltage was set at 4 kV; the flow rate of nitrogen gas (heater
temperature = 300 �C) was set at 10 psig. In TOF-MS, the fragmenter,
skimmer, and OCTRF voltage were set at 75, 50, and 125 V, respectively.
Automatic recalibration of each acquired spectrum was performed using
reference masses of reference standards ([13C isotopic ion of protonated
methanol dimer (2MeOH þ H)]þ, m/z 66.06371) and ([protonated
Hexakis (M þ H)]þ, m/z 622.02896). Mass spectra were acquired at the
rate of 1.5 cycles/s over a m/z 50-1000 range.

CE-TOFMS Conditions for Anionic Metabolite Analysis. The
CE-TOFMS conditions for anionic metabolite analysis were described
elsewhere (47). A commercially available COSMO(þ) capillary (50 μm i.d.�
110 cm) (Nacalai Tesque, Kyoto, Japan), chemically coated with a cationic
polymer, was used as the separation capillary. A 50 mM ammonium acetate
solution (pH8.5) was the electrolyte forCE separation. Prior to the first use, a
newcapillarywas flushed successivelywith the running electrolyte, 50mmol/L
acetic acid (pH 3.4), and then the electrolyte again for 10 min each. Before
each injection, the capillary was equilibrated for 2 min by flushing with
50mMacetic acid (pH3.4) and then for 5min by flushingwith the running
electrolyte. A sample solution (30 nL) was injected at 50 mbar for 30 s, and
-30 kV of voltage was applied. The capillary temperature was thermostated
to20 �C,and the sample traywas cooled tobelow5 �C.AnAgilent 1100 series
pump equipped with a 1:100 splitter was used to deliver 10 μL/min of 5 mM
ammonium acetate in 50% (v/v) methanol/water containing 0.1 μMHexakis
to the CE interface, where it was used as a sheath liquid around the outside
of the CE capillary to provide a stable electrical connection between the tip
of the capillary and the grounded electrospray needle. ESI-TOF-MS
was conducted in negative ionization mode; the capillary voltage was set at
3500 V. For TOF-MS, the fragmenter, skimmer, and Oct RF voltage were
set at 100, 50, and 200 V, respectively. A flow rate of drying nitrogen gas
(heater temperature = 300 �C) was maintained at 10 L/min. Automatic
recalibration of each acquired spectrum was performed using reference
masses of reference standards ([13C isotopic ion of deprotonated acetic acid
dimer (2CH3COOH-H)]-,m/z 120.03841), and ([Hexakisþ deprotonated
acetic acid (CH3COOH - H)]-, m/z 680.03554). Exact mass data were
acquired at a rate of 1.5 spectra/s over a m/z 50-1000 range.

Data Processing. Raw data were analyzed with our proprietary
software named MasterHands (46-48). Data analysis starting with
noise-filtering, baseline correction, peak detection, and integration of
the peak area from sliced electropherograms (m/z 0.02 width). Subse-
quently, the accurate m/z value for each peak detected within the time
domain was calculated with Gaussian curve-fitting to the peak along the
m/z axis. Dynamic programming and the simplex optimization method
were used to explore the time normalization function for matching peaks
in multiple measurements (49). The detected peaks with small differences
inm/z (<20 ppm) and normalized migration time (<1 min) were treated
as the peaks derived fromametabolite. Subsequently, neutral compounds,
salt ions related to Naþ and Kþ, observed under our measurement
conditionswere removed. Redundant features such as fragments, adducts,
isotopes, dimers, trimers, and their combination, for example, the
adduct ion of dimers, were also eliminated on the basis of established
m/z differences (50). Spike noise, CE-specific noise showing small and
narrow peaks, and low-quality (not peak-like shape) results were also
eliminated. For the remaining features, metabolite identities were assigned
by matching their m/z values and migration times with those of standard
compounds.

Sensory Evaluation. To enhance the variety in sensory evaluation
scores simultaneously, we randomly selected sake samples with different
sake meter value (SMV), acid degree, sake type, rice type, yeast, and sake
brewing company. The sensory evaluation scores were assigned by a panel
of four experts who applied typical sensory evaluation criteria for refined
sake. Porcelain cups generally used for drinking sake were used. To adapt
each sake sample to the cup, it was filled one-third to half with sake, and
after several minutes, the content was disposed and the cup was immedi-
ately filled with the test sample. The temperature of all samples was
controlled at 18 �C on water. The evaluators were blinded to the brand
names to eliminate prejudicial bias. Although the need for visual masking
to eliminate sensory evaluation bias attributable to the color of red wine
has been reported (51), we did not mask our samples because they were
almost achromatically clear. For sensory characterization, sweetness,
sourness, bitterness, and zatsumi were graded from 1.0 to 5.0 with a score
resolution of 0.5 point. Grade 5 indicated the highest grade of sweetness,

sourness, bitterness, and zatsumi intensity and grade 1 the lowest grade of
these parameters. To reduce panelist bias, a sake sample having SMV and
acid degree closest to the average of 49 samples was selected as a reference,
for all of which sensory scores were graded as 3, and all sensory scores for
the other 48 samples were graded relative to this reference sample. The
evaluators tasted the reference sample iteratively after tasting approxi-
mately 10 test samples; all test samples were evaluated at least twice, and
the corrected final scores were used for subsequent analyses. Although
others assessed total quality and several other criteria such as umami,
aftertaste, bulge, and smoothness in addition to the four criteria used in
this study as perceivable sake characteristics (32), we confined our study to
sweetness, sourness, bitterness, and zatsumi because the definition of the
other qualities is more abstract and thus less subject to consensus.

Heatmap Visualization and Statistical Analysis. The measured
metabolite concentrationswere transferred toZ scores, clustered on the basis
of Euclidean distance, and visualized as a heatmap representation usingMev
TM4 software (Dana-Farber Cancer Institute, Boston, MA) (52). A
relevance network representing networks among metabolites with a high
correlation coefficient was also visualized with the same software. The
Pearsonmethodwith two-tailed p values calculated byGraphPad Prism ver.
5.02 (GraphPad Software, Inc., San Diego, CA) was used to evaluate the
correlation between two parameters. To develop the multiple linear regres-
sion (MLR) model, we first removed the absolute values of correlation
coefficients below a specified threshold between the concentration of each
metabolite and the sensory evaluation score because for subsequent analysis
the number of features had to be lower than the number of samples. Thenwe
performed stepwise feature selection (forward and backward) to select the
minimum feature sets to eliminate their multicolinearity; a new feature was
added at p<0.25, and a featurewas removed at p>0.25. JMPversion 7.0.1
(SAS Institute, Cary, NC) was used for feature selection and to develop the
multiple linear regression model (MLR).

Support Vector Regression (SVR). As the theories underlying SVM
and SVR have been detailed elsewhere (13,23,53), we provide only a brief
description. SVMmaps place data sets into a high-dimensional space and
then classify them using a hyperplane of computed maximal margins
between them. The optimally identified hyperplane in the feature space
corresponds to a nonlinear decision boundary in the input space. SVRuses
the same principles as SVM for classification with only a few minor
modifications; it applies a margin of tolerance set in approximation to the
SVM that would have arisen from the problem. SVR is solved by a
quadratic optimization problem.

The SVM is a binary discriminant classification tool that maximizes the
margin using a hyperplane between sample data sets that exist in high-order
dimensional space. SVM for the regression problem employs the principle

1

2

)w )2 þC
XM

i¼1

ðξi þ ξ�i Þ ð1Þ

yi -ÆwT � φðxkÞæ-beεþ ξi ð2Þ

ÆwT � φðxkÞæþ b-yieεþ ξ�i ð3Þ

i ¼ 1, 2; :::; M;ξi;ξ
�
i g0 ð4Þ

where φ(x) is the kernel function,w is the separation hyperplane, the pairing
(xi, yi) is the sample and sensory evaluation score, M is the number of
variables in the training data set,C is a trade-off between training error and
margin, and ξ and ξ* are the slack variables representing upper and lower
constraints on system output. SVR generates the predictions using the
formula

f ðxÞ �
Xn

i ¼1
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The radial bias function (RBF) 6, generally used for regression
problems, was used as the kernel function:

φðx, yÞ ¼ expð-γ )x-y )2Þ ð6Þ
We trained SVRmodels in the ranges of 0.1, 0.2, ..., 1.0 for γ, 0.00, 0.02,

..., 0.18 for ε, and 0.001, 0.005, 0.01, 0.05, ..., 100.0 for C to search the
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parameter set. First,we randomly separated all data sets into twogroups, a
training and a validation data set. Cross-validation (CV) was performed
with only training data sets to optimize the training parameters yielding
the best correlation coefficients for observed and predicted data sets. In
this process, the training data set was randomly separated into two groups
including 90% (A) and 10% (B) of the data, and a model was developed
using data sets (A); performance was validated by using data sets (B). This
process was repeated 10 times for selecting all data sets as (B) (10-foldCV).
Subsequently, a predictive model was developed using the optimized
training parameters,and the data sets preserved as validated tests
were predicted. The correlation coefficients obtained using all training
data sets, CV, and validation data are described as Rt, Rcv, and Rv in the
following sections. For analysis using SVR, SVM light (v6.02, Cornel
University, Ithaca, NY) (54) was employedwith default options except for
γ, C, and ε.

Feature Selection for the SVR Model. Although predictive models
such as ANN and SVR can be applied to multiple-feature problems,
feature selection, that is, the reduction of features, is usually performed
prior to the development of the model. Feature selection introduces a
reduction inmodel complexity; this prevents the overfitting of themodel to
a specific problem and also eliminates unnecessary parameters, thereby
contributing to improved interpretability of the final model (55). Here we
compared the predictive accuracy of SVR using data sets without feature
selection and three feature selectionmethods: (i) stepwise feature selection;
(ii) correlation-based feature subset selection (CFS) that evaluates the
worth of a subset of attributes by considering the individual predictive
ability of each feature along with the degree of redundancy among
features; and (iii) a relief algorithm (RA) that evaluates the worth of a
parameter by repeatedly sampling an instance and considering the value of
the given parameter for the nearest instance of the same and different
class (53, 56, 57). We used JMP for procedure i and weka data-mining
software (56) with default parameters for procedures ii and iii.

Simulation of the SVR Model with Feature Alterations. Varia-
tions in the evaluation scores predicted by the trained SVR were
computationally simulated by systematically altering the concentration
of each metabolite. For each of the 49 samples, one metabolite concentra-
tion was systematically altered within a range from its minimum to its
maximum; the concentration of the other metabolites corresponded to the
actual measured values. This procedure was repeated until all metabolites
had been selected for variation.

RESULTS AND DISCUSSION

Sensory Evaluation Test and Resultant Metabolite Profiles.CE-
TOFMS analyses identified 536 ( 17 (SD) and 201 ((9) non-
redundant features in positively and negatively charged mode,
respectively. The features that metabolite identities presented in
our standard library were assigned, and >25 samples were
visualized as a heatmap with relevant information including the
sensory evaluation scores and their correlation coefficients
(Figure 1). Overall, amino acids and organic acids (pink and
green in the bar graph) showed relatively higher concentrations
than other metabolites. Consistent with previous results (7, 36)
among amino acids we observed relatively higher concentrations
of alanine (2093( 504.5 μmol/L), glycine (1166( 227.6 μmol/L),
and proline (1034 ( 151.4 μmol/L) and lower concentrations of
tryptophan (20.10 ( 11.72 μmol/L) and methionine (36.22 (
37.47 μmol/L). Among organic acids, especially lactate (2590 (
817.1 μmol/L), succinate (1855 ( 252.7 μmol/L), and malate
(783.4 ( 258.0 μmol/L) manifested relatively higher con-
centrations. The large standard deviation (SD) of arginine
compared to glutamate (816.8 ( 227.7 μmol/L) and aspartate
(394.3 ( 171.5 μmol/L) was also consistent with previous
reports (36) as was the high level of agmatine (957.5 (
414.4 μmol/L), which is produced from arginine by arginine
decarboxylase (EC 4.1.1.19) during the sake brewing process and
is also a precursor of polyamine that is prevalent in wine but not
detected in sake (58). Arginine and other amino acids in sake
originated from koji, where the amino acids were produced by

rice protein degradation and not used by yeast, and the product of
yeast was not used.

The average sensory evaluation scores were 3.2 ( 0.7
(sweetness), 3.1 ( 0.7 (sourness), 3.2 ( 0.7 (bitterness), and
3.3 ( 0.6 (zatsumi), implying that difference in the evaluation
scores assigned by the different panelists was <2 points in most
cases because there was a resolution of 0.5 between neighboring
scores. Among the sensory evaluation scores, only zatumi and
sourness showed a relatively weak but positive correlation (R =
0.477, p = 0.0005); the other pairs of sensory scores showed
independence. The average value of these scores was close to 3.0.
These score values were the same as those assigned to the
reference sake having SMV, acid degree, and alcoholicity of an
almost average value, implying their correlation with the sensory
evaluation scores. A small SMV value is indicative of sweetness
due to a higher sugar content, whereas a larger value indicates
bitterness due to a low sugar content. A large degree of acidity
and alcoholicity yields a bitter and dense taste, whereas low
degrees produce a sweet or mild flavor. We found that the degree
of acidity was positively correlatedwith sensory evaluation scores
for sourness (R = 0.413, p = 0.0059) and zatsumi (R = 0.447,
p = 0.0026), and SMV was negatively correlated with sourness
(R = -0.423, p = 0.0028); the correlation was not strong, and
other parameters also manifested few correlations (|R| < 0.4).
Thus, these three parameters alone might not be sufficient to
characterize the flavor of sake.

On the heatmap (Figure 1), most amino acids are shown as
relatively clear clusters compared to other metabolites (B in
Figure 1). Another metabolite cluster (A) that includes seven
organic acids and a sweet amino acid, proline, was also observed
at the center. Corresponding tometabolite clusters A and B, sake
samples are clustered in D or E. Among amino acids, only
4-aminobutyrate (GABA), a common nitrogen in sake, and
20 types of protein-containing amino acids and ornithine (9) were
not included in these clusters, although there was a positive
correlation with zatsumi (R = 0.319, p = 0.026). As demon-
strated on the correlation heatmap (right of Figure 1), the
metabolites in both clusters frequently correlated positively with
sourness, zatsumi, or the degree of acidity. The metabolites in
cluster C also exhibited unique profiles; their concentration in
samples F and G was strikingly high. The correlation between
total concentrations or these clusters and each sensory score is
summarized in Table S1 of the Supporting Information. Sweet-
ness and bitterness manifested no significant correlation. In
contrast, sourness was significantly correlated with clusters
A (R = 0.671, p < 0.0001) and B (R = 0.453, p = 0.0011)
and total concentration (R = 0.559, p < 0.0001). Zatsumi was
also significantly correlated with clusters A (R = 0.483, p =
0.0004), B (R = 0.594, p < 0.0001), and C (R = 0.344, p =
0.0156) and total concentration (R=0.596, p<0.0001). Thus, it
is reasonable to suggest that metabolite cluster A and total
concentration contribute to sweetness and zatsumi, respectively,
and sourness and bitterness were not or less strongly related with
these clusters.

Figure 2 depicts the relevance networks of detected metabo-
lites; highly correlated metabolites are visualized in close proxi-
mity with links showing the intensity of the square of the
correlation coefficient. Notably, all metabolites in this network,
except for agmatine and glutamine, correlated positively with
zatsumi, and amino acids with known sensory feature mapped in
relatively close nodes. Regarding sourness, glutamine and aspar-
agine were neighbors of hypoxanthine (59), a metabolite indicat-
ing umami. Guanine, also relevant to umami (60), mapped
between the bitter metabolites tyrosine and phenylalanine. With
respect to sweetness, although two dipeptides, alanine-alanine
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Figure 1. Heatmap showing the quantified metabolic profiles of 49 refined sake samples, sensory evaluation scores for zatumi, bitterness,
sourness, and sweetness, and other relevant information (price (tax exclusive), SMV, acid degree, alcoholicity (in black-green-red scheme))
obtained from the bottle label. The bar graph shows the absolute concentration (μmol/L) of individual metabolites on the log axis. Amino acids
and organic acids are pink and green, respectively. Numbers from 1 to 49 indicate sample number. Sake sample 1 was used as the reference
in sensory evaluation tests. All concentration and sensory score values in the heatmap were transformed into Z-scores and clustered with
Euclidean distances. Gray areas in the heatmap of relevant information indicate missing data. The correlation between each metabolite and
sensory scores or relevant information is shown separately at the bottom of the heatmap (in rainbow scheme). See main document for alphabetical
labels.

http://pubs.acs.org/action/showImage?doi=10.1021/jf903680d&iName=master.img-000.jpg&w=428&h=603
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and glycine-glycine were slightly isolated, the amino acids
glycine, alanine, serine, and tyrosine were strongly correlated.

Supplementary Figure S1 of the Supporting Information
shows the plots of PCA. In the classification of sake (Figure
S1A), only junmai ginjo (red) was not clearly separated; rather, it
slightly converged compared to the other types. This observation
indicates that the test samples had relatively similar metabolic
profiles. However, the accumulative contribution of this PCA
was low (47.7% even in the third PC), and neither the yeast
type (Figure S1B, Supporting Information) nor the rice type
(Figure S1C, Supporting Information) exhibited type-specific
features.

Prediction Results Using the Multiple Regression Model. The
multiple regression model (MLR) with the metabolites se-
lected by stepwise feature selection is presented in Table 1 for
zatsumi and in Supporting Information Table S2 for other
sensory scores. The correlation coefficient matrices bet-
ween two metabolites are shown in Supporting Information
Table S3. The selected metabolites were independent of one
another because the highest correlation between two para-
meters was 0.717 between γ-butyrobetaine and carnitine.

The correlation coefficient between predicted and observed
scores was Rt = 0.849 (p < 0.0001) using complete training
data sets,Rcv= 0.724 (p<0.0001) in CV, andRt = 0.654 (p=
0.0787) using test data sets.

In the MLR model (Table 1), alanine, γ-butyrobetaine, ribo-
flavin, 5-oxoproline, and N-acetylglucosamine 1-phosphate ex-
hibited positive coefficients, possibly resulting in increased
zatsumi. On the other hand, homoarginine þ N6,N6,N6-tri-
methyllysine, which was not separated and observed as a single
peak by CE-MS, glucosaminate, and carnitine manifested nega-
tive coefficients, possibly leading to decreased zatsumi. Except for
alanine and 5-oxoproline (471.7( 246.9 μmol/L), the concentra-
tion of other metabolites was relatively low (<5.164 μmol/L). In
addition, the significance of alanine (p = 0.0006) and 5-oxopro-
line (p = 0.0008) was relatively large, suggesting that these two
metabolites contributed mainly to zatsumi. Among metabolites
of the established MLR, only alanine produces sweetness.
Although 5-oxoproline is reacted to glutamate, known by its
umami flavor, 5-oxoprolinase (EC 3.5.2.9) was observed in
wine samples (61), its sensory property is not known. The
water solubility of the metabolites in the MLR model was large

Figure 2. Relevance network of quantified metabolites. Metabolites with their links are shown when the square correlation coefficient (R 2) between two
metabolites was >0.51 by the permutation test. The link color indicates the intensity of R 2 from 0.51 (blue) to 1 (red). The background color of metabolite
names indicates taste, that is, sweet (pink), bitter (orange), and sour (bright blue). Metabolites in bold and regular font indicate positive and negative correlation
with zatsumi, respectively, and underlined metabolites exhibited a strong correlation with zatsumi at R > 0.55.

Table 1. Multiple Regression Model for Predicting Sensory Evaluation Values of Zatsumi from Selected Metabolite Concentrations

metabolite coefficient error p value water solubility (g L-1 at 25 �C)

(intercept) 0.273 0.112 0.0201

alanine 0.863 0.225 0.0006 167

homoarginine þ N6,N6,N6-trimethyllysine -0.606 0.174 0.0015 50, >50a

glucosaminate -0.291 0.135 0.0385 100

γ-butyrobetaine 0.215 0.178 0.2346 >50a

riboflavin 0.377 0.132 0.0074 68 � 10-3

carnitine -0.431 0.130 0.0022 100b

5-oxoproline 0.522 0.142 0.0008 129a

N-acetylglucosamine-1-phosphate 0.430 0.103 0.0002 >50a

aWater solubility was obtained from Sigma-Aldrich Inc. (St. Louis, MO). Data for metabolites without this remark were obtained from the CAS database (http://www.cas-japan.
jp/expertise/cascontent/registry/index.html). b The value was obtained at 20�C.
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(>50 g/L) except for riboflavin (68 mg/L), known as vitamin B2;
this suggests that the zatsumi flavor is not attributable to
insoluble particles. Iwano et al. (32) used liquid chromato-
graphy-mass spectrometry (LC-MS) to profile chemical com-
ponents; consistent with our findings, they reported that most of
the amino acid-related components were positively correlated
with zatsumi in sake samples (Figure 1). In theMLRmodel, only
alanine was selected among amino acids; the other metabolites
were eliminated in the feature selection because these amino acids
were highly correlated (Figure 2). Iwano et al. also reported that
only a few metabolites including carnosine were negatively
correlated (32). Carnosine was detected by CE-TOFMS, but its
peak was noted in only a few samples.

Predictions Using SVR. In the training SVR models, we also
used randomly separated data sets including training and valida-
tion data sets; CV was conducted with only training data sets.
Comparative results using feature selectionmethods are summar-
ized in Table 2. The SVR models with 108 metabolites (without
feature selection) showed the best correlation coefficients between
observed and predicted sensory scores (Rt=0.860).However, the
correlation at CV dramatically deteriorated (Rcv= 0.472), which
implies overtraining of the SVR model specific for the given data
sets and a decrease in versatility.Results obtained during both the
training phase and CV with CFS and RAmethods showed lower
Rt and Rcv values than did stepwise methods. Thus, the stepwise
method exhibited the best correlation at CV for the data sets used
in this study (Rcv = 0.729).

Supplementary Figure S2 of the Supporting Information
presents the correlation coefficients (Rcv) obtained with the CV
procedure between the predicted and actual sensory evaluation
scores using the SVR parameters (trade-off between training
error and margin C, coefficient of RBF kernel γ, and ε width of
tube for regression ε). The optimized parameters with C= 10.0,
γ=0.1, and ε=0.1 yielded the highest correlation coefficient in
CV. The Rcv values were relatively constant except when C was
close to 0 (Figure S2A, Supporting Information). In Figure S2B
(Supporting Information), although a small γ value tended to

produce a better Rcv value, the changes in Rcv (Figure S2B,
Supporting Information) were smaller than in Figure S2A
(Supporting Information). Thus, the optimized parameters were
insensitive to changes in the value of the parameters, suggesting
the stability of the model against tuning parameters.

Figure 3 depicts the predicted and observed sensory evaluation
scores for zatsumi obtained by SVR and the MLR model,
respectively. Supporting Information Table S4 summarizes the
correlation coefficients and errors between predicted and ob-
served sensory evaluation scores using whole samples or CV in
training and validation data sets. The SVRmodel yielded a better
prediction in CV for zatsumi (Rcv = 0.729, mean error (ME) =
0.138), sweetness (Rcv = 0.853, ME = 0.120), and sourness
(Rcv = 0.835, ME= 0.078) thanMLR (Rcv = 0.724, 0.770, and
0.802, ME = 0.138, 0.112, 0.079). In contrast, MLR was more
accurate (Rcv=0.719,ME=0.167) than SVR (Rcv=0.654,ME
= 0.183) for bitterness. In the validation test, the SVR for
zatsumi (Rv = 0.728, ME = 0.161) and sourness (Rcv = 0.735,
ME= 0.192) was better thanMLR (Rcv = 0.654 and 0.705, ME
= 0.188 and 0.173). With regard to bitterness, the correlation
coefficients in the validation test were considerably worse in both
MLR (Rv = 0.054, ME= 0.324) and SVR (Rv = 0.115, ME=
0.291); the values were derived from a few samples in the
validation data set; nonetheless, SVR was better considering the
mean errors.

To overcome this problem in the evaluation of prediction
accuracy and versatility of the developed model using a relatively
small sample number, we artificially added random noise to the
measured data. We artificially generated different intensities
(5, 10, and 15% relative to the average of the metabolite
concentration or sensory evaluation socres) of white noise to
the metabolites, to the sensory evaluation score, or to both. For
each case, 200 different trials were conducted with different
randomnumbers; averaged results are summarized in Supporting
Information Table S5. For zatsumi and sweetness, the mean
errors yielded by SVR models were lower than those of MLR
models in all instances subjected to validation tests. In contrast,
the mean errors produced by SVR models were almost the same
with respect to sourness and greater with respect to bitterness
compared to MLR models. Thus, with the data we used, the
prediction performance and versatility of SVR was not always
superior to that ofMLR.On the other hand, the SVR can express
more complex associations among features. The highly correlated
metabolites can be exchanged with the features used in the
currently developed models of both SVR and MLR. As shown
in Figures 1 and 2, a number of metabolites correlated with other
metabolites, and we obtained a sensory evaluation score for

Table 2. Prediction Performance of Each Variable Selection Method Using
Support Vector Regression Models

correlation training options

variable selection no. of features Rt Rcv γ ε C

all variables 108 0.830 0.472 0.1 0.12 0.1

stepwise 8 0.860 0.729 0.1 0.1 10

CFS 12 0.779 0.646 0.2 0 0.1

RA 13 0.756 0.589 0.1 0 0.5

Figure 3. Predicted and actual normalized sensory evaluation scores of SVR (A) andMLR (B). Solid circles were predicted using complete data sets and the
training options yielding the best correlation coefficient through the CV procedure. Open circles show the results of validation data sets predicted by the trained
predictive model. In panel B, a plot in validation data sets ((x, y) = (0.375, -0.017)) was omitted.
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sourness and zatsumi, implying that other models that incorpo-
rate alternative metabolites can be developed. In contrast, there
were few metabolites that correlated with sweetness or bitterness
(Figure 1). Therefore, it is possible that charged metabolites do
not contribute significantly to these sensory flavors.

Simulation with Sensory Evaluation Values and Metabolite

Concentrations Using Trained SVR. Figure 4 presents examples
of the quantitative relationship between the predicted sensory
evaluation scores of zatsumi and altered concentrations of each
metabolite selected by stepwise feature selection using the
trained SVR model yielding the best Rcv value. The simulated
trajectories were almost straight lines, although the degree of
the gradient decreased slightly in a nonlinear manner when the
normalized concentration of glucosaminate, carnitine, and
homoarginine þ N6,N6,N6-trimethyllysine was high. Overall
positive/negative correlations between individual metabolites
and their sensory evaluation scores in the MLR and SVR
models showed a similar trend (Table 1). For example, an
increase in alanine raised the sensory evaluation score drasti-
cally, whereas an increase in homoarginine þ N6,N6,N6-tri-
methyllysine and carnitine decreased the score, although the
change was relatively smaller than for alanine. The coefficients
of the MLR model for these three metabolites were 0.863 (p=
0.0006),-0.606 (p=0.015), and-0.431 (p=0.022), indicating
that the absolute value of the coefficients and the degree of the
gradient of the simulated curve exhibited consistency. How-
ever, the sensory evaluation score remained almost constant
even though the normalized concentration of N-acetylglucos-
amine-1-phosphate was changed. This conflicts with the coeffi-
cients in the MLR model (0.430, p = 0.0002), possibly due to
the relatively low concentration of this metabolite. Thus,
compared to the MLR, the SVR modeling methodology pro-
vides two advantages: (1) it captures the nonlinear relationship
between metabolites and sensory evaluation scores and (2) it
reduces the risk of overestimating the effect of metabolites such
as N-acetylglucosamine-1-phosphate on zatsumi that contri-
bute to the sensory evaluation. For further understanding of the
relations among sensory evaluation and selected features,

multiple features of SVR models should be altered simulta-
neously and visualized as their sensitivities.

Limitation of This Study. To explore the relationship between
sensory evaluation scores and the constitutive components in
diverse beverages, artificial perturbation, that is, omission or
excessive adjunction of a single component, and changes in the
sensory evaluation criteria and taste recognition threshold concen-
trationsofconstituentcomponentsare traditional strategies (10,36).
Although this bottom-up approach can catalogue the sensory
properties of individual molecules, combinations of components
hinder investigation of the individual sensory contributionmade by
multiple components. In contrast, the method demonstrated in our
study represents a top-down approach that captures the overview
or general patterns in a feature space, here themetabolite profiles of
sake samples, and their associationwith sensory scores. Needless to
say, this approach cannot substantiate the contribution to sensory
perceptions attributable to individual metabolites.

Representing a limitation in our profiling technique, under our
CE-MSmeasurement conditions, D- and L-isomers of amino acids
could not be separated. On the other hand, humans have
receptors that yield a distinct taste of these isomers (62). D- and
L-lactate in sake, the most abundant charged metabolites that are
expected to show different organoleptic properties, were sepa-
rately quantified. A high correlation between L-lactate and total
lactate and a relatively constant D-lactate level have been reported
during the sake brewing process (29). Integrated analyses with
profiling that include individual quantification of these isomers,
low-polarity molecules, or volatile compounds (63) and involve
other hyphenated MS technology are necessary for a deeper
understanding of these phenomena. Although we conducted
nontarget analysis, a number of unannotated peaks were
observed, and only 14% of the observed peaks were identified
and used in our subsequent analyses. Because the carrying
capacity of the capillaries we used was low, we used sample
aliquots for transfer to other measurement instrumentation. In
addition, systematic MS/MS identification is difficult due to the
wide diversity of the chemical structures and the limited avail-
ability of reference databases.

Figure 4. Relationships between sensory evaluation scores of zatsumi and systematically altered concentrations of each metabolite. These values were
calculated by the trained SVR with metabolites selected by the stepwise feature selection method and yielded the best correlation coefficient by the CV
procedure. PanelsA and B show the results from sake samples 35 and 37 as examples. The concentration on the X axis and the sensory evaluation score on
the Y axis are linearly normalized from 0 to 1.
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Here we first demonstrate an integrated analysis with large-
scale chargedmetabolome profiling, statistical analysis, and SVR
modeling of refined sake samples. For sensory evaluation,
zatsumi and sourness were used, and relatively positively
correlated metabolites including not only amino acids but also
organic acids were found; these metabolites were correlated with
each other. The modeling based on the SVR developed here
successfully captured the nonlinear relationship between sensory
evaluation scores, taking into account both the absolute quantity
and relative changes in the concentration of the metabolites. In
addition, numerical simulation using the established model
clearly visualized these relations. Themethodology demonstrated
in this study may facilitate prediction of quantitative relations
reflected in the quality of foodstuffs and beverages other than
sake.

ABBREVIATIONS USED

ANN, artificial neural networks; CE-MS, capillary electro-
phoresis-mass spectrometry; CV, cross-validation; ESI, electrospray
ionization;MLR,multiple logistic regression; SOM, self-organizing
maps; PCA, principal component analysis; PLS-DA, partial
least-squares-discriminant analysis; SMV, sake meter value; SVM,
support vector machine; SVR, support vector regression.
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